Sebuahgrafik fungsi kuadrat memotong sumbu x di a 1 0 dan b 2 0. Himpunan titik titik x y yang memenuhi π¦ π π₯ ππ₯2 ππ₯ π a 0 adalah parabola. Persamaan fungsi kuadrat bisa dinyatakan menjadi y a x 1 x 2. Desil juga terbagi menjadi 9 macam yaitu d1 d2 d3 d4 d5 d6 d7 d8 dan d9. Untuk melukis grafik fungsi.
Fungsi Linear - Pengertian Fungsi Linear, Grafik, dan Contoh Soal A. Pengertian Fungsi Linear dan Bentuk Umum Fungsi linear adalah fungsi yang disusun oleh persamaan aljabar yaitu berupa konstanta maupun suku berderajat satu, sehingga menghasilkan garis linear dalam koordinat kartesius. Garis linear merupakan istilah matematika untuk garis lurus. Sebagaimana dalam konsep aljabar, konstanta merupakan suatu nilai tetap, misalnya 1, 2, Ξ dan e angka Euler. Sedangkan suku berderajat satu merupakan bentuk ekspresi aljabar dengan nilai pangkat variabel sama dengan satu. Navigasi Cepat A. Pengertian Fungsi Linear A1. Bentuk Umum Fungsi Linear A2. Contoh Fungsi Linear B. Grafik Fungsi Linear B1. Cara Membuat Grafik Fungsi Linear Contoh 1 Grafik fx = 2x + 1 Contoh 2 Grafik y = x Contoh 3 Grafik y = 2 horizontal Contoh 4 Grafik 2y = -4 + 2 bukan bentuk umum A1. Bentuk Umum Fungsi Linear Berikut bentuk umum fungsi linear f x β ax + b atau dalam notasi fungsi umum fx = ax + b y = ax + b atau dengan menggunakan definisi kemiringan garis gradien, koefisien a dapat diganti menjadi koefisien gradien m fx = mx + b y = mx + b dengan a = koefisien variabel x Nilai a dalam bentuk umum fungsi linear fx = ax + b merepresentasikan kemiringan garis gradien dalam koordinat kartesius, sehingga bentuk umum fx = ax + b dapat ditulis menjadi fx = mx + b. b = merupakan suatu nilai tetap konstanta Nilai b dalam bentuk umum fungsi fx = ax + b merepresentasikan titik potong garis terhadap sumbu y di koordinat kartesius. A2. Contoh Fungsi Linear Berikut beberapa contoh fungsi linear fx = 2x + 1 bentuk umum y = -4x + 2 bentuk umum fx = x bentuk umum fx = 3 bentuk umum y = 5 bentuk umum x = x + 1 bentuk umum 3y = 3x + 1 bukan bentuk umum 2y = -x + 5 bukan bentuk umum Pada contoh di atas, fungsi 3y = 3x + 1 dan 2y = -x +1 merupakan fungsi linear walaupun tidak mematuhi bentuk umum fungsi linear. Kedua fungsi tersebut diubah ke bentuk umumnya dengan menjadikan koefisien y menjadi 1. Contoh mengubah ke bentuk umum fungsi linear Mengubah 3y = 3x + 1 ke bentuk umum fungsi linear 3y = 3x + 1 β y = x + 1/3 atau fx = x + 1/3 Jadi, bentuk umumnya adalah fx = x + 1/3 Mengubah 2y = -x + 5 ke bentuk umum fungsi linear 2y = -x + 5 β y = -1/2x + 5/2 atau fx = -1/2x + 5/2 Jadi, bentuk umumnya adalah fx = -1/2x + 5/2 B. Grafik Fungsi Linear dan Contohnya B1. Cara Membuat Grafik Fungsi Linear Berikut beberapa langkah untuk membuat grafik fungsi linear dalam koordinat kartesius Mengidentifikasi fungsi linear Apakah fungsi termasuk linear? Apakah fungsi sudah sesuai dengan bentuk umum fungsi linear? Jika belum, ubah persamaan ke bentuk umum fungsi linear Merancang grafik fungsi linear Apakah fungsi mempunyai konstanta c? Jika tidak, maka c = 0 dan grafik fungsi memotong titik pusat koordinat kartesius di 0, 0 Jika ya, maka fungsi memotong sumbu y dengan nilai c Apakah fungsi mempunyai variabel bebas ax? Jika tidak mempunyai variabel bebas maka grafik akan berbentuk horizontal a = 0, tidak miring horizontal Jika mempunyai variabel bebas, maka kemiringan grafik gradien ditentukan oleh nilai a dalam bentuk umum y = ax + b β y = mx + b m 0, miring ke kanan Lakukan substitusi ke model fungsi minimal 2 nilai bebas Menggambar Grafik Menandai titik rancangan grafik Titik Potong Dan titik hasil substitusi Menarik garis dari titik-titik yang telah ditandai Contoh 1 Grafik Fungsi fx = 2x + 1 Identifikasi fungsi linear fx = 2x + 1 Fungsi termasuk linear, karena terdiri dari konstanta dan suku berderajat satu Fungsi sudah sesuai dengan bentuk umum fungsi linear Perancangan grafik fx = 2x + 1 Mempunyai nilai c = 1, sehingga titip potong sumbu y di titik Tp0, 1 Mempunyai koefisien a = 2, sehingga m > 0 dan grafik miring ke kanan Substitusi nilai acak misalnya diambil nilai acak -2 dan 3 diperoleh fx = 2x + 1 y = 2x + 1 f-2 = 2-2 + 1 = -3 Diperoleh titik Ax, y = A-2, -3 f2 = 23 + 1 = 7 Diperoleh titik Bx, y = B3, 7 Menggambar grafik fx = 2x + 1 Sehingga dapat dibuat grafik berikut dalam koordinat kartesius Grafik Fungsi Linear fx = 2x + 1 Contoh 2 Grafik Fungsi y = x Identifikasi fungsi y = x Fungsi termasuk linear, karena tersusun dari suku berpangkat 1 Fungsi sudah sesuai dengan bentuk umum fungsi linear y = x β fx = x Perancangan grafik fungsi y = x Tidak mempunyai nilai c atau c = 0, sehingga grafik memotong titik koordinat Tp0, 0 Mempunyai koefisien a = 1, sehingga m > 0 dan grafik miring ke kanan Substitusi nilai acak misalnya diambil nilai acak -4 dan 2 diperoleh y = x β fx = x f-4 = x = -4 Diperoleh titik Ax, y = -4, -4 f2 = x = 2 Diperoleh titik Bx, y = 2, 2 Menggambar fungsi y = x Sehingga dapat dibuat grafik berikut dalam koordinat kartesius Grafik Fungsi Linear y = x Contoh 3 Grafik Fungsi y = 2 Identifikasi fungsi y = 2 Fungsi termasuk linear karena tersusun dari konstanta Fungsi sudah sesuai dengan bentuk umum fungsi linear y = 2 β fx = 2 Perancangan grafik fungsi y = 2 Fungsi mempunyai nilai c = 2, sehingga grafik memotong sumbu y di Tp0, 2 Fungsi tidak mempunyai variabel bebas, sehingga nilai a = 0 dan grafik berbentuk horizontal Substitusi nilai acak misalnya diambil nilai acak -2 dan 3 diperoleh y = 2 β fx = 2 f-2 = 2 Diperoleh titik A-2, 2 f3 = 2 Diperoleh titik B3, 2 β΄ Dapat diketahui semua nilai yang disubstitusikan akan bernilai 2 Menggambar fungsi y = 2 Sehingga dapat dibuat grafik berikut dalam koordinat kartesius Grafik Fungsi Linear y = 2 Contoh 4 Grafik Fungsi 2y = -4x + 2 Identifikasi fungsi 2y = -4x + 2 Fungsi merupakan linear karena tersusun oleh konstanta dan suku berderajat satu Fungsi belum memenuhi bentuk umum fungsi linear, karena ruas kanan untuk variabel y mempunyai koefisien bukan satu Sehingga untuk merancang grafik, fungsi diubah ke dalam bentuk umum fungsi linear 2y = -4x + 2 β y = -4x + 2 2 β y = -2x + 1 fx = -2x + 1 Sehingga bentuk umum fungsi linear dari 2y = -4x + 2 adalah fx = -2x + 1 Perancangan grafik fungsi dalam bentuk umumnya fx = -2x + 1 Bentuk umum mempunyai nilai c = 1, sehingga grafik fungsi memotong sumbu y di Tp0, 1 Bentuk umum mempunyai koefisien a = -2, sehingga m < 0 dan grafik miring ke kiri Substitusi nilai bebas, misalnya -2 dan 2 diperoleh 2y = -4x + 2 β y = -2x + 1 fx = -2x + 1 f-2 = -2-2 + 1 = 4 + 1 = 5 Diperoleh titik A-2, 5 f2 = -22 + 1 = -4 + 1 = -3 Diperoleh titik B2, -3 Menggambar grafik fungsi dalam bentuk umumnya Sehingga diperoleh gambar grafik berikut Grafik Fungsi Linear 2y = -4x+1 Tutorial lainnya Daftar Isi Pelajaran Matematika Sekian artikel "Fungsi Linear Pengertian Fungsi Linear, Grafik, dan Contoh Soal". Nantikan artikel menarik lainnya dan mohon kesediaannya untuk share dan juga menyukai halaman Advernesia. Terima kasih...
Tolongdibantu dengan cara dong, besok mau dikumpul, thanks rumus UN=4N+1 dengan 6 suku pak rian akan membaca buku di lantai hotel yg tingginya 5 meter dari permukaan tanah .karena terseggol kaca mata yg akan di gunakannya terjatuh ke das
Kalkulus I Β» Fungsi βΊ Fungsi dan Grafik Fungsi Fungsi Jika variabel \y\ bergantung pada variabel \x\ sedemikian rupa sehingga setiap nilai \x\ menentukan tepat satu nilai \y\, maka kita mengatakan bahwa \y\ adalah fungsi dari \x\. Oleh Tju Ji Long Statistisi Hub. WA 0812-5632-4552 Salah satu kerangka penting dalam kalkulus adalah analisis hubungan antar variabel. Hubungan semacam itu bisa dideskripsikan dalam bentuk grafik, rumus formula, secara numerik dengan tabel, atau dalam kata-kata. Banyak hukum ilmiah dan prinsip-prinsip teknik menggambarkan bagaimana satu kuantitas bergantung pada yang lain. Gagasan ini diresmikan pada tahun 1673 oleh Gottfried Wilhelm Leibniz yang menciptakan istilah fungsi untuk menunjukkan ketergantungan satu kuantitas pada kuantitas lainnya, seperti dijelaskan dalam definisi berikut. Definisi Fungsi Jika variabel \y\ bergantung pada variabel \x\ sedemikian rupa sehingga setiap nilai \x\ menentukan tepat satu nilai \y\, maka kita mengatakan bahwa \y\ adalah fungsi dari \x\. Terdapat 4 metode untuk merepresentasikan fungsi, yaitu Secara numerik dengan tabel Secara aljabar dengan rumus formula. Misalnya, rumus \C = 2Οr\ menyatakan keliling \C\ dari lingkaran sebagai fungsi jari-jarinya \r\. Hanya ada satu nilai \C\ untuk setiap nilai \r\. Secara geometri dengan grafik Secara verbal dengan kata-kata. Sebagai contoh, Hukum Gravitasi Universal Isaac Newton sering dinyatakan sebagai berikut Gaya tarik gravitasi antara dua benda di Alam Semesta berbanding lurus dengan perkalian massa di antara kedua benda tersebut dan berbanding terbalik dengan kuadrat jarak di antara kedua benda. Atau dapat dinyatakan dalam rumus berikut. \[ F = G \frac{m_1m_2}{r^2} \] Grafik Fungsi Bilamana daerah asal dan daerah hasil sebuah fungsi merupakan bilangan riil, kita dapat membayangkan fungsi itu dengan menggambarkan grafiknya pada suatu bidang koordinat. Dan grafik fungsi \f\ adalah grafik dari persamaan \y=fx\. Gambar 1 berikut ini menampilkan grafik dari beberapa fungsi. Gambar 1. Contoh grafik dari beberapa fungsi Grafik dapat memberikan informasi visual yang berharga tentang suatu fungsi. Namun, tidak setiap kurva pada bidang \xy\ adalah grafik suatu fungsi. Sebagai contoh, perhatikan kurva pada Gambar 2, yang dipotong pada dua titik berbeda, a, b dan a, c, dengan garis vertikal. Gambar 2. Kurva ini bukan grafik fungsi Kurva ini tidak dapat berupa grafik \y = fx\ untuk fungsi \f\ apa pun. Ini karena yang mana tidak mungkin, karena \f\ tidak dapat mempunyai dua nilai yang berbeda untuk \a\. Kita nyatakan hasil penting ini dalam definisi berikut. Definisi Uji Garis Vertikal Kurva pada bidang \xy\ adalah grafik dari fungsi \f\ jika dan hanya jika tidak ada garis vertikal yang memotong kurva lebih dari satu kali. Sebagai contoh, grafik persamaan \ x^2 + y^2 = 25 \ adalah lingkaran berjari-jari 5 yang berpusat pada titik asal origin seperti ditampilkan Gambar 3 berikut. Karena garis vertikal memotong grafik lebih dari satu kali, maka persamaan ini tidak mendefinisi \y\ sebagai fungsi dari \x\. Gambar 3. Kurva \ x^2 + y^2 = 25 \ Contoh 1 Buatlah sketsa grafik dari fungsi Penyelesaian Grafik dari fungsi ini ditampilkan pada Gambar 4. Untuk membuat grafik ini, buatlah sebuah tabel nilai di mana untuk sumbu \x\ merupakan daerah asal domain fungsi dan sumbu \y\ merupakan daerah hasil range fungsi, dan hubungkan titik-titik itu dalam sebuah kurva. Daerah asal mula domain fungsi ini adalah himpunan semua bilangan riil \R\ dan daerah hasilnya yaitu \ \{ y y \geq -2 \} \. Dengan demikian, akan kita peroleh grafik fungsi yang diperlihatkan dalam Gambar berikut Gambar 4. Grafik fungsi \y = x^2-2\ Contoh 2 Buatlah sketsa grafik dari fungsi Penyelesaian Grafik dari fungsi ini ditunjukkan pada Gambar 5. Sama seperti pada Contoh 1, untuk memperoleh grafik ini kita membuat sebuah tabel nilai di mana untuk sumbu \x\ merupakan daerah asal fungsi dan sumbu \y\ merupakan daerah hasil fungsi, dan hubungkan titik-titik itu dalam sebuah kurva. Kita gunakan daerah asal mula domain natural. Daerah asal mula untuk fungsi ini adalah semua bilangan riil kecuali 1 dan daerah hasil fungsi adalah \ y y \neq 0 \. Dengan demikian, akan kita peroleh grafik fungsi yang diperlihatkan dalam Gambar berikut Gambar 5. Grafik fungsi \ y = \frac{2}{x-1} \ Cukup sekian ulasan singkat mengenai fungsi dan grafik fungsi dalam artikel ini. Terima kasih telah membaca artikel ini sampai selesai. Jika Anda merasa artikel ini bermanfaat, boleh dibantu share ke teman-temannya, supaya mereka juga bisa belajar dari artikel ini. Sumber Anton, Howard., et al. 2012. Calculus, 10th ed. Hoboken John Wiley & Sons, Inc. Purcell, Edwin J., Dale Verberg., dan Steve Rigdon. 2007. Calculus, ed 9. Penerbit Pearson. Jika Anda merasa artikel ini bermanfaat, bantu klik tombol suka di bawah ini dan tuliskan komentar Anda dengan bahasa yang sopan.
Grafikdi atas adalah grafik fungsi linear, sehingga bentuk umum fungsinya adalah Dari grafik di atas diperoleh untuk maka sehingga diperoleh Perhatikan kembali grafik di atas, untuk maka sehingga diperoleh
ο»ΏFungsi dari grafik?ββββββββββββββββββββββββPembahasanGrafik merupakan gambaran/lukisan pasang surut suatu keadaan mengenai proses naik turunnya hasil, statistik dan sebagainya yang berupa penyajian data-data dalam tabel yang ditampilkan dalam bentuk gambar atau garis. Fungsi GrafikUntuk melukiskan/menggambarkan beberapa data dalam bentuk angka yang lebih sederhana, namun teliti. Grafik lingkaran berfungsi menggambarkan informasi dalam persentase. Untuk memperjelas perkembangan serta perbandingan suatu objek yang saling berpautan secara singkat dan padat.ββββββββββββββββββββββββPelajari Lebih LanjutLangkah-langkah dalam mambaca grafik, tabel, diagram, peta pada dari denah, grafik, tabel, bagan β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ β’ Β» Detail Jawabanβ Mapel B. Indonesiaβ Kelas VII SMPβ Bab Laporanβ Kode kategorisasi 01SamaSamaBelajar Pertanyaan baru di B. Indonesia Perhatikan penggalan resensi berikut ini! Karya Supernova adalah sebuah imajinatif. Sungguh tidak lazim bagi dunia sastra sarat dengan problema filsaf β¦ at dan teori-teori ilmiah. Baru kali ini dalam sastra Indonesia, seorang penulis mampu mengaktualisasikan labirin kehidupan kontemporer secara eksprimentatif dengan gaya yang hampir science fiction. Dalam kutipan tersebut hal yang diresensi adalah .... bahasa pengarang dalam buku kepengaran kekurangan dan keunggulan buku kesimpulan terhadap buku gaya penulisan ceritaβ buatkan puisi tentang soto madura β buatlah puisi dengan awalan K,A,D,E,M,A,N,G,A,N DENGAN TEMA lingkunganβ buat 2 buah contoh kata benda dan gunakan dalam kalimatβ secara umum sindiran juga kritikan pada teks anekdot berhubungan dengan empat hal sebutkan dan jelaskan β
Notasidan Rumus Fungsi Jika suatu fungsi f memetakan setiap x anggota himpunan A ke y anggota himpunan B, maka dapat ditulis dengan notasi fungsi yaitu: f : x β y. Fungsi f seperti dalam notasi tersebut di atas dapat juga dituliskan rumus fungsinya, yaitu: f(x) = y. Contoh : Diketahui himpunan A = { 1, 2, 3 } dan B = { 4, 5, 6,7,8 }.
Dari sketsa grafik, dapat dibuat gambar grafik fungsi kurva fx Langkah-langkah Menggambar Grafik Fungsi Menentukan titik potong kurva fx dengan sumbu yMenentukan sketsa grafik dengan garis bilanganMenentukan titik stasioner dengan turunan pertama fungsi kurva fx, \f'x=0\Menentukan titik belok dengan turunan kedua fungsi kurva fx, \fβx=0\Menentukan titik bantu di sekitar titik stasioner untuk mempertajam grafik Contoh Soal Gambarlah grafik dari \ y=x^3β3x^2β9x+11 \ Jawab Titik potong dengan sumbu y x=0 \[ y=0^{3}-30^{2}-90+11=11 \] \[ Titik \space 0,11 \] Titik Stasioner \[\begin{aligned} yβ &=3x^{2}-6x-9=0\\ 0 &=x^{2}-2x-3\\ 0&=x-3x+1\\ x &=3, y=3^{3}-33^{2}-93+11=-16, Titik 3,-16\\ x &=-1, y=-1^{3}-3-1^{2}-9-1+11=16, Titik -1,16 \end{aligned}\] Titik Belok \[\begin{aligned} yβ &=6x-6=0\\ x &=1, y=1^{3}-31^{2}-91+11=0, Titik 1,0 \end{aligned}\] Titik Bantu .tg-wrap{padding-bottom20px;} .tg {border-collapsecollapse;border-spacing0;} .tg td{border-colorblack;border-stylesolid;border-width1px;font-familyArial, sans-serif;font-size14px; overflowhidden;padding10px 5px;word-breaknormal;} .tg th{border-colorblack;border-stylesolid;border-width1px;font-familyArial, sans-serif;font-size14px; font-weightnormal;overflowhidden;padding10px 5px;word-breaknormal;} .tg .tg-baqh{text-aligncenter;vertical-aligntop} .tg .tg-amwm{font-weightbold;text-aligncenter;vertical-aligntop} x -2 2 4 y 9 -11 -9 Grafik Maka grafik dapat digambar sebagai berikut Materi Lengkap Berikut adalah materi lainnya yang membahas mengenai Penerapan Turunan. Tonton juga video pilihan dari kami berikut ini
Berikutadalah beberapa tujuan dari grafik, yaitu sebagai berikut: Mengungkapkan perbedaan dalam data kualitatif dengan keterampilan dan kesederhanaan Informasi juga dikumpulkan di bagian penjelasan preskriptif yang dapat disederhanakan dengan penggunaan grafik Jadi jika diagram sulit dipahami, tidak ada manfaat yang berharga. Lihat Juga :
Halo Meta, kakak bantu jawab ya Jawaban Gambar terlampir Untuk mencari nilai fungsinya fx = y adalah dengan mensubstitusi nilai x pada fungsi tersebut. Grafik fungsi y = fx = 2x -1 merupakan grafik fungsi linear berbentuk garis lurus sehingga kita hanya perlu memperhatikan batas awal dan akhir saja. Perhatikan domain fungsi dimana Df = {xΓ’Λβ5 Γ’Λβ5 maka substitusi x = Γ’Λβ5 pada fungsi fx = 2xΓ’Λβ1 fΓ’Λβ5 = 2Γ’Λβ5Γ’Λβ1 fΓ’Λβ5 = Γ’Λβ10Γ’Λβ1 fΓ’Λβ5 = Γ’Λβ11 Koordinat titik saat x = Γ’Λβ5 adalah y = Γ’Λβ11 Γ’β β Γ’Λβ5, Γ’Λβ11 Ingat! Titik Γ’Λβ5, Γ’Λβ11 digambar dengan bulatan kosong karena pertidaksamaan >, artinya Γ’Λβ5 tidak termasuk anggota domain fx. Untuk batas akhir, x Γ’β°Β€ 3 maka substitusi x = 3 pada fungsi fx = 2xΓ’Λβ1 f3 = 23Γ’Λβ1 f3 = 6Γ’Λβ1 f3 = 5 Koordinat titik saat x = 3 adalah y = 5 Γ’β β 3, 5 Ingat! Titik 3, 5 digambar dengan bulatan penuh karena pertidaksamaan Γ’β°Β€, artinya 3 termasuk anggota domain fx. Jika dihubungkan garis dari titik Γ’Λβ5, Γ’Λβ11 sampai titik 3, 5, maka diperoleh grafik sebagai berikut. Gambar terlampir
Contoh4: Grafik Fungsi 2y = -4x + 2 # Identifikasi fungsi 2y = -4x + 2 Fungsi merupakan linear karena tersusun oleh konstanta dan suku berderajat satu Fungsi belum memenuhi bentuk umum fungsi linear, karena ruas kanan untuk variabel y mempunyai koefisien bukan satu. Sehingga untuk merancang grafik, fungsi diubah ke dalam bentuk umum fungsi linear
Dalam artikel sebelumnya telah dijelaskan mengenai cara menggambar grafik fungsi kuadrat apabila persamaan atau rumus fungsi kuadrat tersebut sudah diketahui. Sekarang yang menjadi pertanyaannya adalah bagaimana jika gambar atau ciri-ciri grafik fungsi kuadrat sudah diketahui, dapatkah kita menentukan persamaan fungsi kuadrat dari grafik tersebut? Tentu saja bisa. Apabila sketsa grafik suatu fungsi kuadrat diketahui, maka kita dapat menentukan rumus fungsi kuadrat itu. Proses demikian disebut membentuk atau menyusun fungsi kuadrat. Lalu tahukah kalian bagaimana caranya? Caranya sangat mudah sekali. Bisanya dalam soal telah ditetukan gambar grafik fungsi kuadrat atau keterangan-keterangan mengenai grafik tersebut. Keterangan-keterangan yang diketahui pada sketsa grafik fungsi kuadrat seringkali mempunyai ciri-ciri atau sifat-sifat tertentu. Ciri-ciri itu diantaranya adalah sebagai berikut. 1 Grafik fungsi kuadrat memotong sumbu X di Ax1, 0 dan Bx2, 0 serta melalui sebuah titik tertentu, maka persamaan fungsi kuadratnya dapat ditentukan dengan rumus sebagai berikut. y = fx = ax β x1x β x2 Dengan nilai a ditentukan kemudian. 2 Grafik fungsi kuadrat menyinggung sumbu-X di Ax1, 0 dan melalui sebuah titik tertentu, maka persamaan fungsi kuadratnya dapat dibentuk dengan menggunakan rumus sebagai berikut. Dengan nilai a ditentukan kemudian. 3 Grafik fungsi kuadrat melalui titik puncak atau titik balik Pxp, yp dan melalui sebuah titik tertentu maka persamaan fungsi kuadrat dapat kita susun dengan menggunakan rumus sebagai berikut. y = fx = ax β xp2 + yp Dengan nilai a ditentukan kemudian. 4 Grafik fungsi kuadrat melalui titik-titik Ax1, y1, Bx2, y2 dan Cx3, y3 maka persamaan fungsi kuadratnya dapat kita nyatakan sebagai berikut. Dengan nilai a, b dan c ditentukan kemudian. Oke, sekarang biar kalian paham mengenai cara menyusun atau membentuk fungsi kuadrat berdasarkan gambar atau ciri-ciri grafik fungsi kuadrat, perhatikan tiga contoh soal dan pembahasannya berikut ini. Contoh soal 1 Sebuah grafik fungsi kuadrat memotong sumbu-X di A1, 0 dan B2, 0. Apabila grafik tersebut juga melalui titik 0, 4, tentukanlah persamaan fungsi kuadratnya! Jawab Persamaan fungsi kuadrat dapat dinyatakan sebagai y = ax β 1x β 2. Nilai a ditentukan dari keterangan bahwa fungsi kuadrat itu melalui titik 0, 4. Artinya untuk nilai x = 0 diperoleh y = 4. y = ax β 1x β 2 4 = a0 β 10 β 2 4 = aβ1 β2 4 = 2a a = 2 Dengan demikian, persamaan fungsi kuadratnya adalah sebagai berikut. y = fx y = ax β 1x β 2 y = 2x β 1x β 2 y = 2x2 β x β 2x + 2 y = 2x2 β3x + 2 y = 2x2 β 6x + 4 Contoh soal 2 Pada gambar di atas, diperlihatkan sketsa grafik dari sebuah fungsi kuadrat. Tentukanlah persamaan grafik fungsi tersebut. Jawab Berdasarkan gambar grafik fungsi di atas, kita dapat menetapkan bahwa titik puncak parabola di 1 Β½, 0 dan melalui titik 0, 4 Β½. Persamaan fungsi kuadratnya dapat ditentukan sebagai berikut. y = fx = ax β 1 Β½2 karena grafik fungsi melalui titik 0, 4 Β½ maka 4 Β½ = a0 β 1 Β½2 4 Β½ = 9/4 a a = 9/2 Γ 4/9 a = 2 Dengan demikian, rumus fungsi kuadratnya adalah y = fx y = ax β 1 Β½2 y = 2x β 1 Β½2 y = 2x2 β 23/2 x + 9/4 y = 2x2 β 3x + 9/4 y = 2x2 β 6x + 9/2 y = 2x2 β 6x + 4 Β½ Contoh soal 3 Grafik fungsi kuadrat f melalui titik-titik A0, β6 , Bβ1, 0 dan C1, β10. Tentukanlah 1. Persamaan grafik fungsi kuadrat 2. Titik-Titik potong dengan sumbu-X 3. Titik puncak atau titik balik grafik fungsi f. Jawab Menentukan persamaan grafik Dari keterangan mengenai ciri-ciri grafik kita dapat menentukan persamaan fungsi kuadrat dengan menggunakan rumus sebagai berikut y = fx = ax2 + bx + c Pertama, kita tentukan nilai c terlebih dahulu. Nilai c dapat diketahui apabila nilai x = 0. Karena grafik melalui titik A0, β6 , maka y = ax2 + bx + c β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦. Pers 1 β6 = a02 + b0 + c c = β6 jadi, sekarang kita dapatkan persamaan fungsi baru yaitu y = ax2 + bx β6 β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦. Pers 2 Kedua, kita tentukan nilai a dan b dengan menggunakan persamaan 2 dan dua titik lainnya dengan catatan nilai x β 0. Grafik melalui titik Bβ1, 0, berarti x = β1 dan y = 0 sehingga kita dapatkan persamaan sebagai berikut y = ax2 + bx β6 0 = aβ12 + bβ1 β 6 0 = a β b β 6 a β b = 6 a = 6 + b β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦. Pers 3 Grafik melalui titik C1, β10. berarti x = 1 dan y = β10 sehingga kita dapatkan persamaan sebagai berikut y = ax2 + bx β6 β10 = a12 + b1 β 6 β10 = a + b β 6 a + b = β10 + 6 a + b = β4 β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦β¦. Pers 4 Dengan mensubtitusikan persamaan 3 ke persamaan 4, kita dapatkan nilai b sebagai berikut a + b = β4 6 + b + b = β4 6 + 2b = β4 2b = β4 β 6 2b = β10 b = β10/2 b = β5 Dengan mensubtitusikan nilai b = β5 ke persamaan 3 atau persamaan 4, kita peroleh nilai a sebagai berikut. a = 6 + b a = 6 + β5 a = 1 Dengan demikian kita dapatkan nilai a = 1, b = β5 dan c = β6 sehingga apabila ketiga nilai tersebut kita masukkan ke persamaan 1 kita dapat rumus fungsi kuadrat sebagai berikut. y = ax2 + bx + c y = 1x2 + β5x + β6 y = x2 β 5x β 6 Menentukan titik potong dengan sumbu-X Titik potong dengan sumbu-X dapat dicari apabila nilai y = 0. Dari persamaan fungsi kuadrat y = fx = x2 β 5x β 6, kita dapatkan titik potong dengan sumbu-X sebagai berikut. y = x2 β 5x β 6 0 = x2 β 5x β 6 Dengan menggunakan metode pemfaktoran, kita dapatkan nilai-nilai x sebagai berikut. x β 6x + 1 = 0 x1 = 6 dan x2 = β1 Dengan demikian, titik-titik potong dengan sumbu-X adalah di titik 6 , 0 dan β1, 0. Menentukan titik puncak atau titik balik Karena nilai a > 0, maka titik balik parabola merupakan titik balik minimum dimana bentuk kurva parabola adalah terbuka ke atas. Titik balik minimum dapat ditentukan dengan menggunakan rumus sebagai berikut. Titik balik = x, y = βb , D 2a β4a Dimana D = b2 β 4ac dengan a = 1, b = β5 dan c = β6 Titik balik = βb , b2 β 4ac 2a β4a Titik balik = ββ5 , β52 β 41β6 21 β41 Titik balik = 2 Β½, β 12 ΒΌ Jadi, titik balik parabola y = x2 β 5x β 6 adalah di 2 Β½, β 12ΒΌ Demikianlah artikel tentang cara menentukan persamaan fungsi kuadrat berdasarkan grafik lengkap dengan contoh soal dan pembahasan. Semoga dapat bermanfaat untuk Anda. Apabila terdapat kesalahan tanda, simbol, huruf maupun angka dalam perhitungan mohon dimaklumi. Terimakasih atas kunjungannya dan sampai jumpa di artikel berikutnya.
Makajika sebuah grafik sulit dibaca atau dimengerti itu berarti grafik tersebut kehilangan tujuan utamanya. Fungsi Grafik. Adapun fungsi dari grafik ialah untuk menggambarkan data-data yang berupa angka-angka kebentuk yang lebih sederhana secara detail dan menjelaskan perkembangan serta perbandingan suatu objek maupun peristiwa yang saling berhubungan secara singkat dan jelas. Jadi kesimpulan nya garfik ini sebagai berikut ;
Kali ini Sinau Thewe akan menjelaskan fungsi sebuah grafik dan langkah-langkah menggunakannya, berikut penjelasannya Fungsi Grafik di Excel Fungsi grafik adalah untuk menjabarkan data pada sebuah tabel dalam bentuk naik turunnya data sehingga memudahkan pengguna dalam menganalisa. Microshoft Excel menyediakan berbagai macam bentuk Grafik atau yang disebut dengan Chart. Yang mana pada masing-masing bentuk grafik di lengkapi dengan berbagai bentuk pilihan yang ada. Dalam memilih bentuk Chart / Grafik tentunya di sesuaikan dengan kebutuhan data yang ada. Macam-Macam Chart / Grafik Excel 1. Column Chart dan Bar Chart digunakan untuk menampilkan sebuah data dalam bentuk grafik atau diagram batang. 2. Line Chart digunakan untuk menampilkan sebuah data dalam bentuk grafik garis. 3. Pie Chart digunakan untuk menggambarkan sebuah deret data yang ditampilkan dalam diagram lingkaran yang mana data yang dihasilkan merupakan persentase %. 4. Scatter dan Bubble Chart digunakan untuk mengetahui bagaimana variable yang ada pada sumbu X dan juga sumbu Y. Sedangkan bubble chart merupakan variasi dari scatter. Jadi jika kita ingin mengetahui variable yang ada, kita bisa menggunakan jenis grafik ini. 5. Surface dan Radar Chart digunakan untuk mengetahui kombinasi optimal pada data yang ada. Hal ini bisa memperlihatkan area yang ada ditambah dengan nilai yang tertera. A. Cara Menggunakan Grafik / Chart di Excel 1. Buat terlebih dahulu tabel datanya kemudian sorot atau blok range data tersebut termasuk judul kolom dan label. Range ini berfungsi sebagai sumber data pada grafik yang akan kita buat, perhatikan gambar berikut 2. Klik tab Insert, pada group Chart pilih salah satu grafik yang kita inginkan, misalnya Column. Kemudian pada pilihan Drop Down pilih dan klik salah satu bentuk sesuai kebutuhan, perhatikan gambar dibawah ini 3. Maka akan keluar grafik / chart berdasarkan tabel diatas, perhatikan gambar dibawah ini 4. Jika kita merasa tidak yakin dalam memilih bentuk grafik, kita bisa memanfaatkan Recommended Chart berdasarkan tabel tersebut. 5. Sorot / blok range tabelnya, kemudian klik tab Insert, pada group Chart klik Recommended Chart, maka akan keluar pilihan bentuk chart seperti gambar dibawah ini 6. Pilih salah satu bentuk Chart kemudian klik OK. B. Cara Merubah Tipe Chart / Grafik Jika gentuk grafik yang telah kita buat kurang sesuai, kita bisa mengubah bentuk grafik tersebut ke bentuk lainnya tanpa harus meng-insert lagi, caranya adalah sebagai berikut 1. Klik Chart yang telah kita insert tadi. 2. Klik tab Insert 3. Pada group Chart, pilih salah satu bentuk Chart yang sesuai misalnya Line Chart. 4. Kemudian secara otomatis Chart akan berubah kebentuk Chart Line seperti gambar dibawah ini C. Mengubah Desain Grafik / Chart Apabila kita akan mengubah tampilan grafik agar lebih menarik, kita bisa memanfaatkan tab Desain, berikut langkah-langkahnya 1. Klik chart / grafiknya 2. Klik tab Design 3. Pada Group Chart Style, pilih salah satu style yang ada maka tampilan grafik akan berubah seperti gambar dibawah ini D. Menghapus Grafik / Char Langkahnya cukup sederhana 1. Klik Chart / Grafik 2. Tekan tombol Delete pada keyboard maka grafik tersebut akan terhapus. Demikian artikel yang bisa dibagikan, semoga bermanfaat dan terima kasih.
Jikamelihat soal seperti ini yang pertama kita lakukan adalah tulis rumusnya terlebih dahulu rumus fungsi eksponensial adalah r. = a pangkat x ditambah B kemudian kita substitusikan titik yang diketahui 0,2 0,2 X FX ya masukin ke sini 2 = a pangkat x 0 ditambah b 2 = a pangkat 01 ditambah B A K B dengan pindah ruas 2 dikurangi 1 berarti b = 1 kemudianitu si titik yang satunya lagi 1,3 dengan cara yang sama fx x 3 = x 1 ditambah b nya kita ganti dengan 13 = a pangkat 1 A + 1 = 3 dikurangi 1
Teksvideo. di soal ini kita diminta untuk mencari fungsi yang sesuai dengan grafik berikut adalah pertama-tama jika kita bertemu dengan soal seperti ini kita tuliskan dulu titik kunci yang diketahui dari soal itu negatif 1,1 setengah tahu 3/2 lalu 0,2 dan yang terakhir ada 1,3 Sekarang kita lihat. dari opsi a sampai e yang mana a yang memenuhi saat xy0 FX y bernilai dua jadi saat kita
. xjy6uxuq4s.pages.dev/559xjy6uxuq4s.pages.dev/119xjy6uxuq4s.pages.dev/755xjy6uxuq4s.pages.dev/593xjy6uxuq4s.pages.dev/140xjy6uxuq4s.pages.dev/282xjy6uxuq4s.pages.dev/438xjy6uxuq4s.pages.dev/546xjy6uxuq4s.pages.dev/3xjy6uxuq4s.pages.dev/492xjy6uxuq4s.pages.dev/147xjy6uxuq4s.pages.dev/735xjy6uxuq4s.pages.dev/418xjy6uxuq4s.pages.dev/406xjy6uxuq4s.pages.dev/621
nyatakan fungsi tersebut dengan grafik